Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algorithms to Evaluate Multiple Sums for Loop Computations (1211.5204v2)

Published 22 Nov 2012 in hep-th, hep-ph, math-ph, and math.MP

Abstract: We present algorithms to evaluate two types of multiple sums, which appear in higher-order loop computations. We consider expansions of a generalized hypergeometric-type sums, $\sum_{n_1,...,n_N} [Gamma(a1.n+c1) Gamma(a2.n}+c2) ... Gamma(aM.n+cM)] / [Gamma(b1.n+d1) Gamma(b2.n+d2) ... Gamma(bM.n+dM)] x1n1...xNnN $ with $ai.n=\sum_{j=1}N a_{ij}nj$, etc., in a small parameter epsilon around rational values of ci,di's. Type I sum corresponds to the case where, in the limit epsilon -> 0, the summand reduces to a rational function of nj's times x1n1...xNnN; ci,di's can depend on an external integer index. Type II sum is a double sum (N=2), where ci,di's are half-integers or integers as epsilon -> 0 and xi=1; we consider some specific cases where at most six Gamma functions remain in the limit epsilon -> 0. The algorithms enable evaluations of arbitrary expansion coefficients in epsilon in terms of Z-sums and multiple polylogarithms (generalized multiple zeta values). We also present applications of these algorithms. In particular, Type I sums can be used to generate a new class of relations among generalized multiple zeta values. We provide a Mathematica package, in which these algorithms are implemented.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)