Noncommutative peak interpolation revisited (1211.5010v3)
Abstract: Peak interpolation is concerned with a foundational kind of mathematical task: building functions in a fixed algebra $A$ which have prescribed values or behaviour on a fixed closed subset (or on several disjoint subsets). In this paper we do the same but now $A$ is an algebra of operators on a Hilbert space. We briefly survey this {\em noncommutative peak interpolation}, which we have studied with coauthors in a long series of papers, and whose basic theory now appears to be approaching its culmination. This program developed from, and is based partly on, theorems of Hay and Read whose proofs were spectacular, but therefore inaccessible to an uncommitted reader. We give short proofs of these results, using recent progress in noncommutative peak interpolation, and conversely give examples of the use of these theorems in peak interpolation. For example, we prove a useful new noncommutative peak interpolation theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.