Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

On the uniform distribution modulo 1 of multidimensional LS-sequences (1211.3470v1)

Published 15 Nov 2012 in math.NT and math.NA

Abstract: Ingrid Carbone introduced the notion of so-called LS-sequences of points, which are obtained by a generalization of Kakutani's interval splitting procedure. Under an appropriate choice of the parameters $L$ and $S$, such sequences have low discrepancy, which means that they are natural candidates for Quasi-Monte Carlo integration. It is tempting to assume that LS-sequences can be combined coordinatewise to obtain a multidimensional low-discrepancy sequence. However, in the present paper we prove that this is not always the case: if the parameters $L_1,S_1$ and $L_2,S_2$ of two one-dimensional low-discrepancy LS-sequences satisfy certain number-theoretic conditions, then their two-dimensional combination is not even dense in $[0,1]2$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.