Tropical Hurwitz Spaces (1211.2369v1)
Abstract: Hurwitz numbers are a weighted count of degree d ramified covers of curves with specified ramification profiles at marked points on the codomain curve. Isomorphism classes of these covers can be included as a dense open set in a moduli space, called a Hurwitz space. The Hurwitz space has a forgetful morphism to the moduli space of marked, stable curves, and the degree of this morphism encodes the Hurwitz numbers. Mikhalkin has constructed a moduli space of tropical marked, stable curves, and this space is a tropical variety. In this paper, I construct a tropical analogue of the Hurwitz space in the sense that it is a connected, polyhedral complex with a morphism to the tropical moduli space of curves such that the degree of the morphism encodes the Hurwitz numbers.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.