Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory (1211.1183v2)

Published 6 Nov 2012 in stat.CO, stat.AP, stat.ME, and stat.OT

Abstract: Item response theory (IRT) models are a class of statistical models used to describe the response behaviors of individuals to a set of items having a certain number of options. They are adopted by researchers in social science, particularly in the analysis of performance or attitudinal data, in psychology, education, medicine, marketing and other fields where the aim is to measure latent constructs. Most IRT analyses use parametric models that rely on assumptions that often are not satisfied. In such cases, a nonparametric approach might be preferable; nevertheless, there are not many software applications allowing to use that. To address this gap, this paper presents the R package KernSmoothIRT. It implements kernel smoothing for the estimation of option characteristic curves, and adds several plotting and analytical tools to evaluate the whole test/questionnaire, the items, and the subjects. In order to show the package's capabilities, two real datasets are used, one employing multiple-choice responses, and the other scaled responses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube