Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The prediction of future from the past: an old problem from a modern perspective (1210.6758v1)

Published 25 Oct 2012 in nlin.CD

Abstract: The idea of predicting the future from the knowledge of the past is quite natural when dealing with systems whose equations of motion are not known. Such a long-standing issue is revisited in the light of modern ergodic theory of dynamical systems and becomes particularly interesting from a pedagogical perspective due to its close link with Poincar\'e's recurrence. Using such a connection, a very general result of ergodic theory - Kac's lemma - can be used to establish the intrinsic limitations to the possibility of predicting the future from the past. In spite of a naive expectation, predictability results to be hindered rather by the effective number of degrees of freedom of a system than by the presence of chaos. If the effective number of degrees of freedom becomes large enough, regardless the regular or chaotic nature of the system, predictions turn out to be practically impossible. The discussion of these issues is illustrated with the help of the numerical study of simple models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.