Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From interpretation of the three classical mechanics actions to the wave function in quantum mechanics (1210.3025v1)

Published 10 Oct 2012 in quant-ph, physics.class-ph, and physics.hist-ph

Abstract: First, we show that there exists in classical mechanics three actions corresponding to different boundary conditions: two well-known actions, the Euler-Lagrange classical action S_cl(x,t;x_0), which links the initial position x_0 and its position x at time t, the Hamilton-Jacobi action S(x,t), which links a family of particles of initial action S_0(x) to their various positions x at time t, and a new action, the deterministic action S(x,t;x_0,v_0), which links a particle in initial position x_0 and initial velocity v_0 to its position x at time t. We study, in the semi-classical approximation, the convergence of the quantum density and the quantum action, solutions to the Madelung equations, when the Planck constant h tends to 0. We find two different solutions which depend on the initial density. In the first case, where the initial quantum density is a classical density, the quantum density and the quantum action converge to a classical action and a classical density which satisfy the statistical Hamilton-Jacobi equations. These are the equations of a set of classical particles whose initial positions are known only by the initial density. In the second case where initial density converges to a Dirac density, the density converges to the Dirac function and the quantum action converges to a deterministic action. Therefore we introduce into classical mechanics non-discerned particles, which satisfy the statistical Hamilton-Jacobi-equations and explain the Gibbs paradox, and discerned particles, which satisfy the deterministic Hamilton-Jacobi equations. Finally, we propose an interpretation of the Schrodinger wave function that depends on the initial conditions (preparation). This double interpretation seems to be the interpretation of Louis de Broglie's "double solution" idea.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.