Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enumerating topological $(n_k)$-configurations (1210.0306v1)

Published 1 Oct 2012 in cs.CG and math.CO

Abstract: An $(n_k)$-configuration is a set of $n$ points and $n$ lines in the projective plane such that their point-line incidence graph is $k$-regular. The configuration is geometric, topological, or combinatorial depending on whether lines are considered to be straight lines, pseudolines, or just combinatorial lines. We provide an algorithm for generating, for given $n$ and $k$, all topological $(n_k)$-configurations up to combinatorial isomorphism, without enumerating first all combinatorial $(n_k)$-configurations. We apply this algorithm to confirm efficiently a former result on topological $(18_4)$-configurations, from which we obtain a new geometric $(18_4)$-configuration. Preliminary results on $(19_4)$-configurations are also briefly reported.

Citations (12)

Summary

We haven't generated a summary for this paper yet.