Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The optimal packing of eight points in the real projective plane (1902.10177v1)

Published 26 Feb 2019 in math.MG, cs.IT, math.CO, and math.IT

Abstract: How can we arrange $n$ lines through the origin in three-dimensional Euclidean space in a way that maximizes the minimum interior angle between pairs of lines? Conway, Hardin and Sloane (1996) produced line packings for $n \leq 55$ that they conjectured to be within numerical precision of optimal in this sense, but until now only the cases $n \leq 7$ have been solved. In this paper, we resolve the case $n = 8$. Drawing inspiration from recent work on the Tammes problem, we enumerate contact graph candidates for an optimal configuration and eliminate those that violate various combinatorial and geometric necessary conditions. The contact graph of the putatively optimal numerical packing of Conway, Hardin and Sloane is the only graph that survives, and we recover from this graph an exact expression for the minimum distance of eight optimally packed points in the real projective plane.

Citations (4)

Summary

We haven't generated a summary for this paper yet.