Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Limit theorems for monotonic convolution and the Chernoff product formula (1209.4260v4)

Published 19 Sep 2012 in math.OA and math.PR

Abstract: Bercovici and Pata showed that the correspondence between classically, freely, and Boolean infinitely divisible distributions holds on the level of limit theorems. We extend this correspondence also to distributions infinitely divisible with respect to the additive monotone convolution. Because of non-commutativity of this convolution, we use a new technique based on the Chernoff product formula. In fact, the correspondence between the Boolean and monotone limit theorems extends from probability measures to positive measures of total weight at most one. Finally, we study this correspondence for multiplicative monotone convolution, where the Bercovici-Pata bijection no longer holds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.