Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

A note on Automorphisms of the Affine Cremona Group (1209.3427v3)

Published 15 Sep 2012 in math.AG and math.AC

Abstract: Let $\mathcal{G}$ be an ind-group and let $\mathcal{U} \subseteq \mathcal{G}$ be a unipotent ind-subgroup. We prove that an abstract group automorphism $\theta \colon \mathcal{G} \to \mathcal{G}$ maps $\mathcal{U}$ isomorphically onto a unipotent ind-subgroup of $\mathcal{G}$, provided that $\theta$ fixes a closed torus $T \subseteq \mathcal{G}$, which normalizes $\mathcal{U}$ and the action of $T$ on $\mathcal{U}$ by conjugation fixes only the neutral element. As an application we generalize a result by Hanspeter Kraft and the author as follows: If an abstract group automorphism of the affine Cremona group $\mathcal{G}_3$ in dimension 3 fixes the subgroup of tame automorphisms $T{\mathcal G}_3$, then it also fixes a whole family of non-tame automorphisms (including the Nagata automorphism).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube