Geometry and Analysis of Dirichlet forms (1208.4955v1)
Abstract: Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Newtonian property, (iii) the intrinsic length structure coincides with the gradient structure. Moreover, for the standard (resistance) Dirichlet form on the Sierpinski gasket equipped with the Kusuoka measure, we identify the intrinsic length structure with the measurable Riemannian and the gradient structures. We also apply the above results to the (coarse) Ricci curvatures and asymptotics of the gradient of the heat kernel.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.