Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Statistics of anomalously localized states at the center of band E=0 in the one-dimensional Anderson localization model (1208.4789v1)

Published 23 Aug 2012 in cond-mat.dis-nn, math-ph, and math.MP

Abstract: We consider the distribution function $P(|\psi|{2})$ of the eigenfunction amplitude at the center-of-band (E=0) anomaly in the one-dimensional tight-binding chain with weak uncorrelated on-site disorder (the one-dimensional Anderson model). The special emphasis is on the probability of the anomalously localized states (ALS) with $|\psi|{2}$ much larger than the inverse typical localization length $\ell_{0}$. Using the solution to the generating function $\Phi_{an}(u,\phi)$ found recently in our works we find the ALS probability distribution $P(|\psi|{2})$ at $|\psi|{2}\ell_{0} >> 1$. As an auxiliary preliminary step we found the asymptotic form of the generating function $\Phi_{an}(u,\phi)$ at $u >> 1$ which can be used to compute other statistical properties at the center-of-band anomaly. We show that at moderately large values of $|\psi|{2}\ell_{0}$, the probability of ALS at E=0 is smaller than at energies away from the anomaly. However, at very large values of $|\psi|{2}\ell_{0}$, the tendency is inverted: it is exponentially easier to create a very strongly localized state at E=0 than at energies away from the anomaly. We also found the leading term in the behavior of $P(|\psi|{2})$ at small $|\psi|{2}<< \ell_{0}{-1}$ and show that it is consistent with the exponential localization corresponding to the Lyapunov exponent found earlier by Kappus and Wegner and Derrida and Gardner.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.