Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forbidding Kuratowski Graphs as Immersions (1207.5329v1)

Published 23 Jul 2012 in math.CO and cs.DM

Abstract: The immersion relation is a partial ordering relation on graphs that is weaker than the topological minor relation in the sense that if a graph $G$ contains a graph $H$ as a topological minor, then it also contains it as an immersion but not vice versa. Kuratowski graphs, namely $K_{5}$ and $K_{3,3}$, give a precise characterization of planar graphs when excluded as topological minors. In this note we give a structural characterization of the graphs that exclude Kuratowski graphs as immersions. We prove that they can be constructed by applying consecutive $i$-edge-sums, for $i\leq 3$, starting from graphs that are planar sub-cubic or of branch-width at most 10.

Citations (19)

Summary

We haven't generated a summary for this paper yet.