Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Computation of Immersion Obstructions for Unions of Graph Classes (1207.5636v1)

Published 24 Jul 2012 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: In the final paper of the Graph Minors series N. Robertson and P. Seymour proved that graphs are well-quasi-ordered under the immersion ordering. A direct implication of this theorem is that each class of graphs that is closed under taking immersions can be fully characterized by forbidding a finite set of graphs (immersion obstruction set). However, as the proof of the well-quasi-ordering theorem is non-constructive, there is no generic procedure for computing such a set. Moreover, it remains an open issue to identify for which immersion-closed graph classes the computation of those sets can become effective. By adapting the tools that were introduced by I. Adler, M. Grohe and S. Kreutzer, for the effective computation of minor obstruction sets, we expand the horizon of computability to immersion obstruction sets. In particular, our results propagate the computability of immersion obstruction sets of immersion-closed graph classes to immersion obstruction sets of finite unions of immersion closed graph classes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.