Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Quantum Communication Speed Up Distributed Computation? (1207.5211v5)

Published 22 Jul 2012 in cs.DC, cs.CC, cs.DS, and quant-ph

Abstract: The focus of this paper is on {\em quantum distributed} computation, where we investigate whether quantum communication can help in {\em speeding up} distributed network algorithms. Our main result is that for certain fundamental network problems such as minimum spanning tree, minimum cut, and shortest paths, quantum communication {\em does not} help in substantially speeding up distributed algorithms for these problems compared to the classical setting. In order to obtain this result, we extend the technique of Das Sarma et al. [SICOMP 2012] to obtain a uniform approach to prove non-trivial lower bounds for quantum distributed algorithms for several graph optimization (both exact and approximate versions) as well as verification problems, some of which are new even in the classical setting, e.g. tight randomized lower bounds for Hamiltonian cycle and spanning tree verification, answering an open problem of Das Sarma et al., and a lower bound in terms of the weight aspect ratio, matching the upper bounds of Elkin [STOC 2004]. Our approach introduces the {\em Server model} and {\em Quantum Simulation Theorem} which together provide a connection between distributed algorithms and communication complexity. The Server model is the standard two-party communication complexity model augmented with additional power; yet, most of the hardness in the two-party model is carried over to this new model. The Quantum Simulation Theorem carries this hardness further to quantum distributed computing. Our techniques, except the proof of the hardness in the Server model, require very little knowledge in quantum computing, and this can help overcoming a usual impediment in proving bounds on quantum distributed algorithms.

Citations (48)

Summary

We haven't generated a summary for this paper yet.