Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

High order semi-Lagrangian methods for the incompressible Navier-Stokes equations (1207.5147v2)

Published 21 Jul 2012 in math.NA

Abstract: We propose a class of semi-Lagrangian methods of high approximation order in space and time, based on spectral element space discretizations and exponential integrators of Runge-Kutta type. We discuss the extension of these methods to the Navier-Stokes equations, and their implementation using projections. Semi-Lagrangian methods up to order three are implemented and tested on various examples. The good performance of the methods for convection-dominated problems is demonstrated with numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.