Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Reputation Systems: An Axiomatic Approach (1207.4163v1)

Published 11 Jul 2012 in cs.GT

Abstract: Reasoning about agent preferences on a set of alternatives, and the aggregation of such preferences into some social ranking is a fundamental issue in reasoning about uncertainty and multi-agent systems. When the set of agents and the set of alternatives coincide, we get the so-called reputation systems setting. Famous types of reputation systems include page ranking in the context of search engines and traders ranking in the context of e-commerce. In this paper we present the first axiomatic study of reputation systems. We present three basic postulates that the desired/aggregated social ranking should satisfy and prove an impossibility theorem showing that no appropriate social ranking, satisfying all requirements, exists. Then we show that by relaxing any of these requirements an appropriate social ranking can be found. We first study reputation systems with (only) positive feedbacks. This setting refers to systems where agents' votes are interpreted as indications for the importance of other agents, as is the case in page ranking. Following this, we discuss the case of negative feedbacks, a most common situation in e-commerce settings, where traders may complain about the behavior of others. Finally, we discuss the case where both positive and negative feedbacks are available.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)