Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Value Iteration for Risk-aware Markov Decision Processes (1701.01290v3)

Published 5 Jan 2017 in cs.SY and math.OC

Abstract: We consider large-scale Markov decision processes (MDPs) with a risk measure of variability in cost, under the risk-aware MDPs paradigm. Previous studies showed that risk-aware MDPs, based on a minimax approach to handling risk, can be solved using dynamic programming for small to medium sized problems. However, due to the "curse of dimensionality", MDPs that model real-life problems are typically prohibitively large for such approaches. In this paper, we employ an approximate dynamic programming approach, and develop a family of simulation-based algorithms to approximately solve large-scale risk-aware MDPs. In parallel, we develop a unified convergence analysis technique to derive sample complexity bounds for this new family of algorithms.

Citations (20)

Summary

We haven't generated a summary for this paper yet.