Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothed Functional Algorithms for Stochastic Optimization using q-Gaussian Distributions (1206.4832v6)

Published 21 Jun 2012 in cs.IT, cs.LG, math.IT, and stat.ME

Abstract: Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, specially when the objective is to improve the performance of a stochastic system. However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in literature, which include Gaussian, Cauchy and uniform distributions among others. This paper studies a new class of kernels based on the q-Gaussian distribution, that has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.

Citations (8)

Summary

We haven't generated a summary for this paper yet.