Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Euclidean Projections onto the Intersection of Norm Balls (1206.4638v1)

Published 18 Jun 2012 in cs.LG and stat.ML

Abstract: Using sparse-inducing norms to learn robust models has received increasing attention from many fields for its attractive properties. Projection-based methods have been widely applied to learning tasks constrained by such norms. As a key building block of these methods, an efficient operator for Euclidean projection onto the intersection of $\ell_1$ and $\ell_{1,q}$ norm balls $(q=2\text{or}\infty)$ is proposed in this paper. We prove that the projection can be reduced to finding the root of an auxiliary function which is piecewise smooth and monotonic. Hence, a bisection algorithm is sufficient to solve the problem. We show that the time complexity of our solution is $O(n+g\log g)$ for $q=2$ and $O(n\log n)$ for $q=\infty$, where $n$ is the dimensionality of the vector to be projected and $g$ is the number of disjoint groups; we confirm this complexity by experimentation. Empirical study reveals that our method achieves significantly better performance than classical methods in terms of running time and memory usage. We further show that embedded with our efficient projection operator, projection-based algorithms can solve regression problems with composite norm constraints more efficiently than other methods and give superior accuracy.

Citations (24)

Summary

We haven't generated a summary for this paper yet.