2000 character limit reached
A new Linear Time Bi-level $\ell_{1,\infty}$ projection ; Application to the sparsification of auto-encoders neural networks (2407.16293v1)
Published 23 Jul 2024 in cs.LG
Abstract: The $\ell_{1,\infty}$ norm is an efficient-structured projection, but the complexity of the best algorithm is, unfortunately, $\mathcal{O}\big(n m \log(n m)\big)$ for a matrix $n\times m$.\ In this paper, we propose a new bi-level projection method, for which we show that the time complexity for the $\ell_{1,\infty}$ norm is only $\mathcal{O}\big(n m \big)$ for a matrix $n\times m$. Moreover, we provide a new $\ell_{1,\infty}$ identity with mathematical proof and experimental validation. Experiments show that our bi-level $\ell_{1,\infty}$ projection is $2.5$ times faster than the actual fastest algorithm and provides the best sparsity while keeping the same accuracy in classification applications.
- Z. He and W. Yu, “Stable feature selection for biomarker discovery,” Computational biology and chemistry, vol. 34, no. 4, pp. 215–225, 2010.
- R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” 2019, preprint arXiv:1907.10597.
- J. M. Alvarez and M. Salzmann, “Learning the number of neurons in deep networks,” in Advances in Neural Information Processing Systems, 2016, pp. 2270–2278.
- S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural network,” in Advances in neural information processing systems, 2015, pp. 1135–1143.
- A. N. Gomez, I. Zhang, K. Swersky, Y. Gal, and G. E. Hinton, “Learning sparse networks using targeted dropout,” arXiv :1905.13678, 2019.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
- J. Cavazza, P. Morerio, B. Haeffele, C. Lane, V. Murino, and R. Vidal, “Dropout as a low-rank regularizer for matrix factorization,” in International Conference on Artificial Intelligence and Statistics (AISTATS), 2018, pp. 435–444.
- R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.
- T. Hastie, R. Tibshirani, and M. Wainwright, “Statistcal learning with sparsity: The lasso and generalizations,” CRC Press, 2015.
- M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.
- Z. Huang and N. Wang, “Data-driven sparse structure selection for deep neural networks,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 304–320.
- J. Yoon and S. J. Hwang, “Combined group and exclusive sparsity for deep neural networks,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 3958–3966.
- S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group sparse regularization for deep neural networks,” Neurocomputing, vol. 241, pp. 81–89, 2017.
- N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,” Journal of Computational and Graphical Statistics, vol. 22, no. 2, pp. 231–245, 2013.
- I. Yasutoshi, F. Yasuhiro, and K. Hisashi, “Fast sparse group lasso,” in Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc., 2019.
- J. Friedman, T. Hastie, and R. Tibshirani, “Regularization path for generalized linear models via coordinate descent,” Journal of Statistical Software, vol. 33, pp. 1–122, 2010.
- J. Mairal and B. Yu, “Complexity analysis of the lasso regularization path,” in Proceedings of the 29th International Conference on Machine Learning (ICML-12), 2012, pp. 353–360.
- G. Chierchia, N. Pustelnik, J. C. Pesquet, and B. Pesquet-Popescu, “Epigraphical projection and proximal tools for solving constrained convex optimization problems,” Signal, Image and Video Processing, 2015.
- M. Barlaud, W. Belhajali, P. Combettes, and L. Fillatre, “Classification and regression using an outer approximation projection-gradient method,” vol. 65, no. 17, 2017, pp. 4635–4643.
- L. Condat, “Fast projection onto the simplex and the l1 ball,” Mathematical Programming Series A, vol. 158, no. 1, pp. 575–585, 2016.
- G. Perez, M. Barlaud, L. Fillatre, and J.-C. Régin, “A filtered bucket-clustering method for projection onto the simplex and the ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-ball,” Mathematical Programming, May 2019.
- A. Quattoni, X. Carreras, M. Collins, and T. Darrell, “An efficient projection for ℓ1,∞subscriptℓ1\ell_{1,\infty}roman_ℓ start_POSTSUBSCRIPT 1 , ∞ end_POSTSUBSCRIPT regularization,” in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 857–864.
- B. Bejar, I. Dokmanić, and R. Vidal, “The fastest ℓ1,∞subscriptℓ1\ell_{1,\infty}roman_ℓ start_POSTSUBSCRIPT 1 , ∞ end_POSTSUBSCRIPT prox in the West,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3858–3869, 2021.
- G. Chau, B. Wohlberg, and P. Rodriguez, “Efficient projection onto the ℓ1,∞subscriptℓ1\ell_{1,\infty}roman_ℓ start_POSTSUBSCRIPT 1 , ∞ end_POSTSUBSCRIPT mixed-norm ball using a newton root search method,” SIAM Journal on Imaging Sciences, vol. 12, no. 1, pp. 604–623, 2019.
- D. Chu, C. Zhang, S. Sun, and Q. Tao, “Semismooth newton algorithm for efficient projections onto ℓ1,∞subscriptℓ1\ell_{1,\infty}roman_ℓ start_POSTSUBSCRIPT 1 , ∞ end_POSTSUBSCRIPT-norm ball,” in International Conference on Machine Learning, 2020, pp. 1974–1983.
- J. J. Moreau, “Fonctions convexes duales et points proximaux dans un espace hilbertien,” Comptes Rendus de l’Académie des Sciences de Paris, vol. A255, no. 22, pp. 2897–2899, Nov 1962.
- P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011, pp. 185–212.
- L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, “Proximal splitting algorithms for convex optimization: A tour of recent advances, with new twists,” SIAM Review, vol. 65, no. 2, pp. 375–435, May 2023.
- G. Perez, L. Condat, and M. Barlaud, “Near-linear time projection onto the l1,infty ball application to sparse autoencoders.” arXiv: 2307.09836, 2023.
- A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classical to evolutionary approaches and applications,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2018.
- K. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.-S. Pang, “Model selection via bilevel optimization,” IEEE International Conference on Neural Networks - Conference Proceedings, 2006.
- P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM Journal on Scientific Computing, vol. 14, 1993.
- J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bull. Soc.Math. France., 93, pp. 273–299, 1965.
- N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends® in Optimization, 2014.
- L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with compressive autoencoders,” ICLR Conference Toulon, 2017.
- D. Kingma and M. Welling, “Auto-encoding variational bayes,” International Conference on Learning Representation, 2014.
- J. Snoek, R. Adams, and H. Larochelle, “On nonparametric guidance for learning autoencoder representations,” in Artificial Intelligence and Statistics. PMLR, 2012, pp. 1073–1080.
- L. Le, A. Patterson, and M. White, “Supervised autoencoders: Improving generalization performance with unsupervised regularizers,” Advances in Neural Information Processing Systems, 2018.
- M. Barlaud and F. Guyard, “Learning a sparse generative non-parametric supervised autoencoder,” Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021.
- J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.
- H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in Advances in Neural Information Processing Systems 32, 2019, pp. 3597–3607.
- D. Kingma and J. Ba, “a method for stochastic optimization.” International Conference on Learning Representations, pp. 1–13, 2015.
- M. Truchi, C. Lacoux, C. Gille, J. Fassy, V. Magnone, R. Lopes Goncalves, C. Girard-Riboulleau, I. Manosalva-Pena, M. Gautier-Isola, K. Lebrigand, P. Barbry, S. Spicuglia, G. Vassaux, R. Rezzonico, M. Barlaud, and B. Mari, “Detecting subtle transcriptomic perturbations induced by lncrnas knock-down in single-cell crispri screening using a new sparse supervised autoencoder neural network,” Frontiers in Bioinformatics, 2024.
- M. Barlaud and F. Guyard, “Learning sparse deep neural networks using efficient structured projections on convex constraints for green ai,” International Conference on Pattern Recognition, Milan, pp. 1566–1573, 2020.
- G. Cyprien, F. Guyard, M. Antonini, and M. Barlaud, “Learning sparse autoencoders for green ai image coding,” Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Rhodes, Greece, June 2023.
- J. Ascenso, E. Alshina, and T. Ebrahimi, “The jpeg ai standard: Providing efficient human and machine visual data consumption,” IEEE MultiMedia, vol. 30, no. 1, pp. 100–111, 2023.