Higher quasi-categories vs higher Rezk spaces (1206.4354v3)
Abstract: We introduce a notion of n-quasi-categories as fibrant objects of a model category structure on presheaves on Joyal's n-cell category \Theta_n. Our definition comes from an idea of Cisinski and Joyal. However, we show that this idea has to be slightly modified to get a reasonable notion. We construct two Quillen equivalences between the model category of n-quasi-categories and the model category of Rezk \Theta_n-spaces showing that n-quasi-categories are a model for (\infty, n)-categories. For n = 1, we recover the two Quillen equivalences defined by Joyal and Tierney between quasi-categories and complete Segal spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.