Random fields at a nonequilibrium phase transition (1206.1878v2)
Abstract: We investigate nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such "random-field" disorder is known to have dramatic effects: It prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we demonstrate that the phase transition of the one-dimensional generalized contact process persists in the presence of random field disorder. The dynamics in the symmetry-broken phase becomes ultraslow and is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by means of large-scale Monte-Carlo simulations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.