Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

On the scaling ranges of detrended fluctuation analysis for long-memory correlated short series of data (1206.1007v1)

Published 5 Jun 2012 in physics.data-an and q-fin.GN

Abstract: We examine the scaling regime for the detrended fluctuation analysis (DFA) - the most popular method used to detect the presence of long memory in data and the fractal structure of time series. First, the scaling range for DFA is studied for uncorrelated data as a function of length $L$ of time series and regression line coefficient $R2$ at various confidence levels. Next, an analysis of artificial short series with long memory is performed. In both cases the scaling range $\lambda$ is found to change linearly -- both with $L$ and $R2$. We show how this dependence can be generalized to a simple unified model describing the relation $\lambda=\lambda(L, R2, H)$ where $H$ ($1/2\leq H \leq 1$) stands for the Hurst exponent of long range autocorrelated data. Our findings should be useful in all applications of DFA technique, particularly for instantaneous (local) DFA where enormous number of short time series has to be examined at once, without possibility for preliminary check of the scaling range of each series separately.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.