Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Exponential moments of self-intersection local times of stable random walks in subcritical dimensions (1205.4917v1)

Published 22 May 2012 in math.PR

Abstract: Let $(X_t, t \geq 0)$ be an $\alpha$-stable random walk with values in $\Zd$. Let $l_t(x) = \int_0t \delta_x(X_s) ds$ be its local time. For $p>1$, not necessarily integer, $I_t = \sum_x l_tp(x)$ is the so-called $p$-fold self- intersection local time of the random walk. When $p(d -\alpha) < d$, we derive precise logarithmic asymptotics of the probability $P(I_t \geq r_t)$ for all scales $r_t \gg \E(I_t)$. Our result extends previous works by Chen, Li and Rosen 2005, Becker and K\"onig 2010, and Laurent 2012.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube