Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Graph Cut from a Filtering Point of View (1205.4450v3)

Published 20 May 2012 in cs.CV

Abstract: Spectral graph theory is well known and widely used in computer vision. In this paper, we analyze image segmentation algorithms that are based on spectral graph theory, e.g., normalized cut, and show that there is a natural connection between spectural graph theory based image segmentationand and edge preserving filtering. Based on this connection we show that the normalized cut algorithm is equivalent to repeated iterations of bilateral filtering. Then, using this equivalence we present and implement a fast normalized cut algorithm for image segmentation. Experiments show that our implementation can solve the original optimization problem in the normalized cut algorithm 10 to 100 times faster. Furthermore, we present a new algorithm called conditioned normalized cut for image segmentation that can easily incorporate color image patches and demonstrate how this segmentation problem can be solved with edge preserving filtering.

Citations (2)

Summary

We haven't generated a summary for this paper yet.