Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Algorithms for Temporal Graph Cuts (1702.04746v1)

Published 15 Feb 2017 in cs.SI and cs.DB

Abstract: The sparsest cut problem consists of identifying a small set of edges that breaks the graph into balanced sets of vertices. The normalized cut problem balances the total degree, instead of the size, of the resulting sets. Applications of graph cuts include community detection and computer vision. However, cut problems were originally proposed for static graphs, an assumption that does not hold in many modern applications where graphs are highly dynamic. In this paper, we introduce the sparsest and normalized cut problems in temporal graphs, which generalize their standard definitions by enforcing the smoothness of cuts over time. We propose novel formulations and algorithms for computing temporal cuts using spectral graph theory, multiplex graphs, divide-and-conquer and low-rank matrix approximation. Furthermore, we extend our formulation to dynamic graph signals, where cuts also capture node values, as graph wavelets. Experiments show that our solutions are accurate and scalable, enabling the discovery of dynamic communities and the analysis of dynamic graph processes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.