Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved approach to attribute reduction with covering rough sets (1205.2541v1)

Published 11 May 2012 in cs.AI

Abstract: Attribute reduction is viewed as an important preprocessing step for pattern recognition and data mining. Most of researches are focused on attribute reduction by using rough sets. Recently, Tsang et al. discussed attribute reduction with covering rough sets in the paper [E. C.C. Tsang, D. Chen, Daniel S. Yeung, Approximations and reducts with covering generalized rough sets, Computers and Mathematics with Applications 56 (2008) 279-289], where an approach based on discernibility matrix was presented to compute all attribute reducts. In this paper, we provide an improved approach by constructing simpler discernibility matrix with covering rough sets, and then proceed to improve some characterizations of attribute reduction provided by Tsang et al. It is proved that the improved discernible matrix is equivalent to the old one, but the computational complexity of discernible matrix is greatly reduced.

Summary

We haven't generated a summary for this paper yet.