Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dependence space of matroids and its application to attribute reduction (1312.4231v2)

Published 16 Dec 2013 in cs.AI

Abstract: Attribute reduction is a basic issue in knowledge representation and data mining. Rough sets provide a theoretical foundation for the issue. Matroids generalized from matrices have been widely used in many fields, particularly greedy algorithm design, which plays an important role in attribute reduction. Therefore, it is meaningful to combine matroids with rough sets to solve the optimization problems. In this paper, we introduce an existing algebraic structure called dependence space to study the reduction problem in terms of matroids. First, a dependence space of matroids is constructed. Second, the characterizations for the space such as consistent sets and reducts are studied through matroids. Finally, we investigate matroids by the means of the space and present two expressions for their bases. In a word, this paper provides new approaches to study attribute reduction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.