Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Robust Classification with Adiabatic Quantum Optimization (1205.1148v2)

Published 5 May 2012 in quant-ph

Abstract: We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization; and model parameters are represented as binary expansions of low bit-depth. In the present work we validate this approach by using a heuristic classical solver as a stand-in for quantum hardware. Testing on several popular data sets and comparing with a number of existing losses we find substantial advantages in robustness as measured by test error under increasing label noise. Robustness is enabled by the non-convexity of our hardware-compatible loss function, which we name q-loss.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube