Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reed's Conjecture on hole expansions (1205.0731v2)

Published 3 May 2012 in cs.DM

Abstract: In 1998, Reed conjectured that for any graph $G$, $\chi(G) \leq \lceil \frac{\omega(G) + \Delta(G)+1}{2}\rceil$, where $\chi(G)$, $\omega(G)$, and $\Delta(G)$ respectively denote the chromatic number, the clique number and the maximum degree of $G$. In this paper, we study this conjecture for some expansions of graphs, that is graphs obtained with the well known operation composition of graphs. We prove that Reed's Conjecture holds for expansions of bipartite graphs, for expansions of odd holes where the minimum chromatic number of the components is even, when some component of the expansion has chromatic number 1 or when a component induces a bipartite graph. Moreover, Reed's Conjecture holds if all components have the same chromatic number, if the components have chromatic number at most 4 and when the odd hole has length 5. Finally, when $G$ is an odd hole expansion, we prove $\chi(G)\leq\lceil\frac{\omega(G)+\Delta(G)+1}{2}\rceil+1$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.