Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colouring Graphs with Sparse Neighbourhoods: Bounds and Applications (1810.06704v1)

Published 15 Oct 2018 in math.CO and cs.DM

Abstract: Let $G$ be a graph with chromatic number $\chi$, maximum degree $\Delta$ and clique number $\omega$. Reed's conjecture states that $\chi \leq \lceil (1-\varepsilon)(\Delta + 1) + \varepsilon\omega \rceil$ for all $\varepsilon \leq 1/2$. It was shown by King and Reed that, provided $\Delta$ is large enough, the conjecture holds for $\varepsilon \leq 1/130,000$. In this article, we show that the same statement holds for $\varepsilon \leq 1/26$, thus making a significant step towards Reed's conjecture. We derive this result from a general technique to bound the chromatic number of a graph where no vertex has many edges in its neighbourhood. Our improvements to this method also lead to improved bounds on the strong chromatic index of general graphs. We prove that $\chi'_s(G)\leq 1.835 \Delta(G)2$ provided $\Delta(G)$ is large enough.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marthe Bonamy (70 papers)
  2. Thomas Perrett (4 papers)
  3. Luke Postle (67 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.