Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reed's conjecture on some special classes of graphs (1205.0730v2)

Published 3 May 2012 in cs.DM

Abstract: Reed conjectured that for any graph $G$, $\chi(G) \leq \lceil \frac{\omega(G)+\Delta(G)+1}{2}\rceil$, where $\chi(G)$, $\omega(G)$, and $\Delta(G)$ respectively denote the chromatic number, the clique number and the maximum degree of $G$. In this paper, we verify this conjecture for some special classes of graphs, in particular for subclasses of $P_5$-free graphs or $Chair$-free graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.