Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource Buying Games (1204.4111v1)

Published 18 Apr 2012 in cs.GT

Abstract: In resource buying games a set of players jointly buys a subset of a finite resource set E (e.g., machines, edges, or nodes in a digraph). The cost of a resource e depends on the number (or load) of players using e, and has to be paid completely by the players before it becomes available. Each player i needs at least one set of a predefined family S_i in 2E to be available. Thus, resource buying games can be seen as a variant of congestion games in which the load-dependent costs of the resources can be shared arbitrarily among the players. A strategy of player i in resource buying games is a tuple consisting of one of i's desired configurations S_i together with a payment vector p_i in RE_+ indicating how much i is willing to contribute towards the purchase of the chosen resources. In this paper, we study the existence and computational complexity of pure Nash equilibria (PNE, for short) of resource buying games. In contrast to classical congestion games for which equilibria are guaranteed to exist, the existence of equilibria in resource buying games strongly depends on the underlying structure of the S_i's and the behavior of the cost functions. We show that for marginally non-increasing cost functions, matroids are exactly the right structure to consider, and that resource buying games with marginally non-decreasing cost functions always admit a PNE.

Citations (16)

Summary

We haven't generated a summary for this paper yet.