Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharing Non-Anonymous Costs of Multiple Resources Optimally (1412.4456v2)

Published 15 Dec 2014 in cs.GT

Abstract: In cost sharing games, the existence and efficiency of pure Nash equilibria fundamentally depends on the method that is used to share the resources' costs. We consider a general class of resource allocation problems in which a set of resources is used by a heterogeneous set of selfish users. The cost of a resource is a (non-decreasing) function of the set of its users. Under the assumption that the costs of the resources are shared by uniform cost sharing protocols, i.e., protocols that use only local information of the resource's cost structure and its users to determine the cost shares, we exactly quantify the inefficiency of the resulting pure Nash equilibria. Specifically, we show tight bounds on prices of stability and anarchy for games with only submodular and only supermodular cost functions, respectively, and an asymptotically tight bound for games with arbitrary set-functions. While all our upper bounds are attained for the well-known Shapley cost sharing protocol, our lower bounds hold for arbitrary uniform cost sharing protocols and are even valid for games with anonymous costs, i.e., games in which the cost of each resource only depends on the cardinality of the set of its users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Max Klimm (41 papers)
  2. Daniel Schmand (16 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.