Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Matrix Formula of Differential Resultant for First Order Generic Ordinary Differential Polynomials (1204.3773v1)

Published 17 Apr 2012 in cs.SC

Abstract: In this paper, a matrix representation for the differential resultant of two generic ordinary differential polynomials $f_1$ and $f_2$ in the differential indeterminate $y$ with order one and arbitrary degree is given. That is, a non-singular matrix is constructed such that its determinant contains the differential resultant as a factor. Furthermore, the algebraic sparse resultant of $f_1, f_2, \delta f_1, \delta f_2$ treated as polynomials in $y, y', y"$ is shown to be a non-zero multiple of the differential resultant of $f_1, f_2$. Although very special, this seems to be the first matrix representation for a class of nonlinear generic differential polynomials.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube