Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Benjamini--Schramm continuity of root moments of graph polynomials (1204.0463v2)

Published 2 Apr 2012 in math.CO

Abstract: Recently, M.\ Ab\'ert and T.\ Hubai studied the following problem. The chromatic measure of a finite simple graph is defined to be the uniform distribution on its chromatic roots. Ab\'ert and Hubai proved that for a Benjamini-Schramm convergent sequence of finite graphs, the chromatic measures converge in holomorphic moments. They also showed that the normalized log of the chromatic polynomial converges to a harmonic real function outside a bounded disc. In this paper we generalize their work to a wide class of graph polynomials, namely, multiplicative graph polynomials of bounded exponential type. A special case of our results is that for any fixed complex number $v_0$ the measures arising from the Tutte polynomial $Z_{G_n}(z,v_0)$ converge in holomorphic moments if the sequence $(G_n)$ of finite graphs is Benjamini--Schramm convergent. This answers a question of Ab\'ert and Hubai in the affirmative. Even in the original case of the chromatic polynomial, our proof is considerably simpler.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.