Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cutoff for general spin systems with arbitrary boundary conditions (1202.4246v3)

Published 20 Feb 2012 in math.PR, math-ph, and math.MP

Abstract: The cutoff phenomenon describes a sharp transition in the convergence of a Markov chain to equilibrium. In recent work, the authors established cutoff and its location for the stochastic Ising model on the $d$-dimensional torus $(Z/nZ)d$ for any $d\geq 1$. The proof used the symmetric structure of the torus and monotonicity in an essential way. Here we enhance the framework and extend it to general geometries, boundary conditions and external fields to derive a cutoff criterion that involves the growth rate of balls and the log-Sobolev constant of the Glauber dynamics. In particular, we show there is cutoff for stochastic Ising on any sequence of bounded-degree graphs with sub-exponential growth under arbitrary external fields provided the inverse log-Sobolev constant is bounded. For lattices with homogenous boundary, such as all-plus, we identify the cutoff location explicitly in terms of spectral gaps of infinite-volume dynamics on half-plane intersections. Analogous results establishing cutoff are obtained for non-monotone spin-systems at high temperatures, including the gas hard-core model, the Potts model, the anti-ferromagnetic Potts model and the coloring model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)