Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Approximate Quadratic Programming for Large (Brain) Graph Matching (1112.5507v5)

Published 23 Dec 2011 in math.OC, cs.DS, and q-bio.NC

Abstract: Quadratic assignment problems (QAPs) arise in a wide variety of domains, ranging from operations research to graph theory to computer vision to neuroscience. In the age of big data, graph valued data is becoming more prominent, and with it, a desire to run algorithms on ever larger graphs. Because QAP is NP-hard, exact algorithms are intractable. Approximate algorithms necessarily employ an accuracy/efficiency trade-off. We developed a fast approximate quadratic assignment algorithm (FAQ). FAQ finds a local optima in (worst case) time cubic in the number of vertices, similar to other approximate QAP algorithms. We demonstrate empirically that our algorithm is faster and achieves a lower objective value on over 80% of the suite of QAP benchmarks, compared with the previous state-of-the-art. Applying the algorithms to our motivating example, matching C. elegans connectomes (brain-graphs), we find that FAQ achieves the optimal performance in record time, whereas none of the others even find the optimum.

Citations (24)

Summary

We haven't generated a summary for this paper yet.