Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On prisms, Möbius ladders and the cycle space of dense graphs (1112.5101v1)

Published 21 Dec 2011 in math.CO

Abstract: For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube