Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Artificial Bee Colony Algorithm for MLP Training on Earthquake Time Series Data Prediction (1112.4628v1)

Published 20 Dec 2011 in cs.NE, cs.AI, and cs.LG

Abstract: Nowadays, computer scientists have shown the interest in the study of social insect's behaviour in neural networks area for solving different combinatorial and statistical problems. Chief among these is the Artificial Bee Colony (ABC) algorithm. This paper investigates the use of ABC algorithm that simulates the intelligent foraging behaviour of a honey bee swarm. Multilayer Perceptron (MLP) trained with the standard back propagation algorithm normally utilises computationally intensive training algorithms. One of the crucial problems with the backpropagation (BP) algorithm is that it can sometimes yield the networks with suboptimal weights because of the presence of many local optima in the solution space. To overcome ABC algorithm used in this work to train MLP learning the complex behaviour of earthquake time series data trained by BP, the performance of MLP-ABC is benchmarked against MLP training with the standard BP. The experimental result shows that MLP-ABC performance is better than MLP-BP for time series data.

Citations (43)

Summary

We haven't generated a summary for this paper yet.