Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

$E_{d(d)} \times \mathbb{R}^+$ Generalised Geometry, Connections and M theory (1112.3989v2)

Published 16 Dec 2011 in hep-th and math.DG

Abstract: We show that generalised geometry gives a unified description of bosonic eleven-dimensional supergravity restricted to a $d$-dimensional manifold for all $d\leq7$. The theory is based on an extended tangent space which admits a natural $E_{d(d)} \times \mathbb{R}+$ action. The bosonic degrees of freedom are unified as a "generalised metric", as are the diffeomorphism and gauge symmetries, while the local $O(d)$ symmetry is promoted to $H_d$, the maximally compact subgroup of $E_{d(d)}$. We introduce the analogue of the Levi--Civita connection and the Ricci tensor and show that the bosonic action and equations of motion are simply given by the generalised Ricci scalar and the vanishing of the generalised Ricci tensor respectively. The formalism also gives a unified description of the bosonic NSNS and RR sectors of type II supergravity in $d-1$ dimensions. Locally the formulation also describes M theory variants of double field theory and we derive the corresponding section condition in general dimension. We comment on the relation to other approaches to M theory with $E_{d(d)}$ symmetry, as well as the connections to flux compactifications and the embedding tensor formalism.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.