Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mourre estimates for compatible Laplacians on complete manifolds with corners of codimension 2 (1112.2947v2)

Published 13 Dec 2011 in math.SP

Abstract: We apply Mourre theory to compatible Laplacians on manifolds with corners of codimension 2 in order to prove absence of singular spectrum, that non-threshold eigenvalues have finite multiplicity and could accumulate only at thresholds or infinity. It turns out that we need Mourre estimates on manifolds with cylindrical ends where the results are both expected and consequences of more general theorems. In any case we also provide a description, interesting in its own, of Mourre theory in such context that makes our text complete and suggests generalizations to higher order codimension corners. We use theorems of functional analysis that are suitable for these geometric applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.