Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling Limit of Random Planar Quadrangulations with a Boundary (1111.7227v3)

Published 30 Nov 2011 in math.PR

Abstract: We discuss the scaling limit of large planar quadrangulations with a boundary whose length is of order the square root of the number of faces. We consider a sequence $(\sigma_n)$ of integers such that $\sigma_n/\sqrt{2n}$ tends to some $\sigma\in[0,\infty]$. For every $n \ge 1$, we call $q_n$ a random map uniformly distributed over the set of all rooted planar quadrangulations with a boundary having $n$ faces and $2\sigma_n$ half-edges on the boundary. For $\sigma\in (0,\infty)$, we view $q_n$ as a metric space by endowing its set of vertices with the graph metric, rescaled by $n{-1/4}$. We show that this metric space converges in distribution, at least along some subsequence, toward a limiting random metric space, in the sense of the Gromov--Hausdorff topology. We show that the limiting metric space is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the two-dimensional disc. For $\sigma=0$, the same convergence holds without extraction and the limit is the so-called Brownian map. For $\sigma=\infty$, the proper scaling becomes $\sigma_n{-1/2}$ and we obtain a convergence toward Aldous's CRT.

Summary

We haven't generated a summary for this paper yet.