Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guarding Quadrangulations and Stacked Triangulations with Edges (2006.13722v1)

Published 24 Jun 2020 in cs.DM and math.CO

Abstract: Let $G = (V,E)$ be a plane graph. A face $f$ of $G$ is guarded by an edge $vw \in E$ if at least one vertex from ${v,w}$ is on the boundary of $f$. For a planar graph class $\mathcal{G}$ we ask for the minimal number of edges needed to guard all faces of any $n$-vertex graph in $\mathcal{G}$. We prove that $\lfloor n/3 \rfloor$ edges are always sufficient for quadrangulations and give a construction where $\lfloor (n-2)/4 \rfloor$ edges are necessary. For $2$-degenerate quadrangulations we improve this to a tight upper bound of $\lfloor n/4 \rfloor$ edges. We further prove that $\lfloor 2n/7 \rfloor$ edges are always sufficient for stacked triangulations (that are the $3$-degenerate triangulations) and show that this is best possible up to a small additive constant.

Summary

We haven't generated a summary for this paper yet.