Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Resolving conflicts between statistical methods by probability combination: Application to empirical Bayes analyses of genomic data (1111.6174v1)

Published 26 Nov 2011 in stat.ME, cs.IT, math.IT, math.ST, q-bio.QM, and stat.TH

Abstract: In the typical analysis of a data set, a single method is selected for statistical reporting even when equally applicable methods yield very different results. Examples of equally applicable methods can correspond to those of different ancillary statistics in frequentist inference and of different prior distributions in Bayesian inference. More broadly, choices are made between parametric and nonparametric methods and between frequentist and Bayesian methods. Rather than choosing a single method, it can be safer, in a game-theoretic sense, to combine those that are equally appropriate in light of the available information. Since methods of combining subjectively assessed probability distributions are not objective enough for that purpose, this paper introduces a method of distribution combination that does not require any assignment of distribution weights. It does so by formalizing a hedging strategy in terms of a game between three players: nature, a statistician combining distributions, and a statistician refusing to combine distributions. The optimal move of the first statistician reduces to the solution of a simpler problem of selecting an estimating distribution that minimizes the Kullback-Leibler loss maximized over the plausible distributions to be combined. The resulting combined distribution is a linear combination of the most extreme of the distributions to be combined that are scientifically plausible. The optimal weights are close enough to each other that no extreme distribution dominates the others. The new methodology is illustrated by combining conflicting empirical Bayes methodologies in the context of gene expression data analysis.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)