Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains (1111.5052v3)

Published 21 Nov 2011 in math.NA and nlin.PS

Abstract: We present and analyse an implicit-explicit timestepping procedure with finite element spatial approximation for a semilinear reaction-diffusion systems on evolving domains arising from biological models, such as Schnakenberg's (1979). We employ a Lagrangian formulation of the model equations which permits the error analysis for parabolic equations on a fixed domain but introduces technical difficulties, foremost the space-time dependent conductivity and diffusion. We prove optimal-order error estimates in the $\Lp{\infty}(0,T;\Lp{2}(\W))$ and $\Lp{2}(0,T;\Hil{1}(\W))$ norms, and a pointwise stability result. We remark that these apply to Eulerian solutions. Details on the implementation of the Lagrangian and the Eulerian scheme are provided. We also report on a numerical experiment for an application to pattern formation on an evolving domain.

Summary

We haven't generated a summary for this paper yet.