Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A conservative Eulerian finite element method for transport and diffusion in moving domains (2404.07130v1)

Published 10 Apr 2024 in math.NA and cs.NA

Abstract: The paper introduces a finite element method for an Eulerian formulation of partial differential equations governing the transport and diffusion of a scalar quantity in a time-dependent domain. The method follows the idea from Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2): 585-614, 2019] of a solution extension to realise the Eulearian time-stepping scheme. However, a reformulation of the partial differential equation is suggested to derive a scheme which conserves the quantity under consideration exactly on the discrete level. For the spatial discretisation, the paper considers an unfitted finite element method. Ghost-penalty stabilisation is used to release the discrete solution extension and gives a scheme robust against arbitrary intersections between the mesh and geometry interface. The stability is analysed for both first- and second-order backward differentiation formula versions of the scheme. Several numerical examples in two and three spatial dimensions are included to illustrate the potential of this method.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com