Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Jordan product determined points in matrix algebras (1111.4108v1)

Published 17 Nov 2011 in math.OA and math.RA

Abstract: Let $M_n(R)$ be the algebra of all $n\times n$ matrices over a unital commutative ring $R$ with 6 invertible. We say that $A\in M_n(R)$ is a Jordan product determined point if for every $R$-module $X$ and every symmetric $R$-bilinear map ${\cdot, \cdot}$ : $M_n(R)\times M_n(R)\to X$ the following two conditions are equivalent: (i) there exists a fixed element $w\in X$ such that ${x,y}=w$ whenever $x\circ y=A$, $x,y\in M_n(R)$; (ii) there exists an $R$-linear map $T:M_n(R)2\to X$ such that ${x,y}=T(x\circ y)$ for all $x,y\in M_n(R)$. In this paper, we mainly prove that all the matrix units are the Jordan product determined points in $M_n(R)$ when $n\geq 3$. In addition, we get some corollaries by applying the main results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.